3.113 \(\int \frac{x^3+x^4}{1+x^2} \, dx\)

Optimal. Leaf size=30 \[ \frac{x^3}{3}+\frac{x^2}{2}-\frac{1}{2} \log \left (x^2+1\right )-x+\tan ^{-1}(x) \]

[Out]

-x + x^2/2 + x^3/3 + ArcTan[x] - Log[1 + x^2]/2

________________________________________________________________________________________

Rubi [A]  time = 0.0252424, antiderivative size = 30, normalized size of antiderivative = 1., number of steps used = 6, number of rules used = 5, integrand size = 15, \(\frac{\text{number of rules}}{\text{integrand size}}\) = 0.333, Rules used = {1593, 801, 635, 203, 260} \[ \frac{x^3}{3}+\frac{x^2}{2}-\frac{1}{2} \log \left (x^2+1\right )-x+\tan ^{-1}(x) \]

Antiderivative was successfully verified.

[In]

Int[(x^3 + x^4)/(1 + x^2),x]

[Out]

-x + x^2/2 + x^3/3 + ArcTan[x] - Log[1 + x^2]/2

Rule 1593

Int[(u_.)*((a_.)*(x_)^(p_.) + (b_.)*(x_)^(q_.))^(n_.), x_Symbol] :> Int[u*x^(n*p)*(a + b*x^(q - p))^n, x] /; F
reeQ[{a, b, p, q}, x] && IntegerQ[n] && PosQ[q - p]

Rule 801

Int[(((d_.) + (e_.)*(x_))^(m_)*((f_.) + (g_.)*(x_)))/((a_) + (c_.)*(x_)^2), x_Symbol] :> Int[ExpandIntegrand[(
(d + e*x)^m*(f + g*x))/(a + c*x^2), x], x] /; FreeQ[{a, c, d, e, f, g}, x] && NeQ[c*d^2 + a*e^2, 0] && Integer
Q[m]

Rule 635

Int[((d_) + (e_.)*(x_))/((a_) + (c_.)*(x_)^2), x_Symbol] :> Dist[d, Int[1/(a + c*x^2), x], x] + Dist[e, Int[x/
(a + c*x^2), x], x] /; FreeQ[{a, c, d, e}, x] &&  !NiceSqrtQ[-(a*c)]

Rule 203

Int[((a_) + (b_.)*(x_)^2)^(-1), x_Symbol] :> Simp[(1*ArcTan[(Rt[b, 2]*x)/Rt[a, 2]])/(Rt[a, 2]*Rt[b, 2]), x] /;
 FreeQ[{a, b}, x] && PosQ[a/b] && (GtQ[a, 0] || GtQ[b, 0])

Rule 260

Int[(x_)^(m_.)/((a_) + (b_.)*(x_)^(n_)), x_Symbol] :> Simp[Log[RemoveContent[a + b*x^n, x]]/(b*n), x] /; FreeQ
[{a, b, m, n}, x] && EqQ[m, n - 1]

Rubi steps

\begin{align*} \int \frac{x^3+x^4}{1+x^2} \, dx &=\int \frac{x^3 (1+x)}{1+x^2} \, dx\\ &=\int \left (-1+x+x^2+\frac{1-x}{1+x^2}\right ) \, dx\\ &=-x+\frac{x^2}{2}+\frac{x^3}{3}+\int \frac{1-x}{1+x^2} \, dx\\ &=-x+\frac{x^2}{2}+\frac{x^3}{3}+\int \frac{1}{1+x^2} \, dx-\int \frac{x}{1+x^2} \, dx\\ &=-x+\frac{x^2}{2}+\frac{x^3}{3}+\tan ^{-1}(x)-\frac{1}{2} \log \left (1+x^2\right )\\ \end{align*}

Mathematica [A]  time = 0.0053304, size = 30, normalized size = 1. \[ \frac{x^3}{3}+\frac{x^2}{2}-\frac{1}{2} \log \left (x^2+1\right )-x+\tan ^{-1}(x) \]

Antiderivative was successfully verified.

[In]

Integrate[(x^3 + x^4)/(1 + x^2),x]

[Out]

-x + x^2/2 + x^3/3 + ArcTan[x] - Log[1 + x^2]/2

________________________________________________________________________________________

Maple [A]  time = 0.002, size = 25, normalized size = 0.8 \begin{align*} -x+{\frac{{x}^{2}}{2}}+{\frac{{x}^{3}}{3}}+\arctan \left ( x \right ) -{\frac{\ln \left ({x}^{2}+1 \right ) }{2}} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

int((x^4+x^3)/(x^2+1),x)

[Out]

-x+1/2*x^2+1/3*x^3+arctan(x)-1/2*ln(x^2+1)

________________________________________________________________________________________

Maxima [A]  time = 1.52162, size = 32, normalized size = 1.07 \begin{align*} \frac{1}{3} \, x^{3} + \frac{1}{2} \, x^{2} - x + \arctan \left (x\right ) - \frac{1}{2} \, \log \left (x^{2} + 1\right ) \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((x^4+x^3)/(x^2+1),x, algorithm="maxima")

[Out]

1/3*x^3 + 1/2*x^2 - x + arctan(x) - 1/2*log(x^2 + 1)

________________________________________________________________________________________

Fricas [A]  time = 1.45196, size = 73, normalized size = 2.43 \begin{align*} \frac{1}{3} \, x^{3} + \frac{1}{2} \, x^{2} - x + \arctan \left (x\right ) - \frac{1}{2} \, \log \left (x^{2} + 1\right ) \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((x^4+x^3)/(x^2+1),x, algorithm="fricas")

[Out]

1/3*x^3 + 1/2*x^2 - x + arctan(x) - 1/2*log(x^2 + 1)

________________________________________________________________________________________

Sympy [A]  time = 0.089859, size = 22, normalized size = 0.73 \begin{align*} \frac{x^{3}}{3} + \frac{x^{2}}{2} - x - \frac{\log{\left (x^{2} + 1 \right )}}{2} + \operatorname{atan}{\left (x \right )} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((x**4+x**3)/(x**2+1),x)

[Out]

x**3/3 + x**2/2 - x - log(x**2 + 1)/2 + atan(x)

________________________________________________________________________________________

Giac [A]  time = 1.13593, size = 32, normalized size = 1.07 \begin{align*} \frac{1}{3} \, x^{3} + \frac{1}{2} \, x^{2} - x + \arctan \left (x\right ) - \frac{1}{2} \, \log \left (x^{2} + 1\right ) \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((x^4+x^3)/(x^2+1),x, algorithm="giac")

[Out]

1/3*x^3 + 1/2*x^2 - x + arctan(x) - 1/2*log(x^2 + 1)